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SUMMARY

We investigate the e�ectiveness of the partition-of-unity method (PUM) for convection–di�usion prob-
lems. We show that for the linear di�usion equation, an exponential enrichment function based on an ap-
proximation of the analytic solution leads to improved accuracy compared to the standard �nite-element
method. It is illustrated that this approach can be more e�cient than using polynomial enrichment to
increase the order of the scheme. We argue that the PUM enrichment, can be interpreted as a subgrid-
scale model in a multiscale framework, and that the choice of enrichment function has consequences
for the stabilization properties of the method. The exponential enrichment is shown to function as a
near optimal subgrid-scale model for linear convection. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The partition-of-unity method [1–3], also known as ‘generalized’ or ‘extended’ �nite-element
method, has emerged as a powerful technique for incorporating special functions into the
�nite-element method. These special functions, also called ‘enrichment functions’, can be
chosen based on approximate analytic solutions in order to provide a better approximation
than can be obtained from standard polynomial shape functions. This feature was clearly
demonstrated by Strouboulis et al. [4], who considered the Laplacian in domains with sev-
eral elliptical voids. In this case, superior accuracy was obtained by incorporating harmonic
basis functions corresponding to the problem of the elliptical void in an in�nite medium.
The generalized �nite-element method has become particularly popular in the computational
modelling of propagating discontinuities such as cracks in solid materials. As shown by
Belytschko et al. [5–9], crack discontinuities can be represented independently of the mesh by
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incorporating discontinuous �elds into the standard displacement-based �nite-element approx-
imation using a partition-of-unity method. This formulation has the advantage of eliminating
the need for pre-de�ned crack paths and remeshing procedures. Laghrouche et al. [10] em-
ployed the partition-of-unity concept for solving wave problems such as the di�raction of
plane waves by cylinders and spheres. By incorporating harmonic enrichment functions into
the approximation, wavelengths shorter than the element size could be represented accurately.
As shown by Taylor et al. [11] and Duarte et al. [12], an alternative form of p-adaptivity
can also be established by incorporating higher-order polynomial enrichment functions into
the �nite-element approximation. This concept was successfully applied in Reference [13] to
overcome volumetric locking during plastic �ow.
In many �uid-dynamic applications it would be bene�cial to represent strong continuous

variations in the solution using relatively coarse meshes, for example, in viscous regions as-
sociated with wall-bounded �ows. In this paper, we consider the performance of the partition-
of-unity method on a model problem for such phenomena, the solution of the linear di�usion
equation for Stokes’ second problem. We consider two types of enrichment functions, one
containing characteristics of the analytic solution, and one corresponding to the higher-order
approximation described in Reference [11].
We show that the choice of an enrichment function appropriate for di�usion-dominated

regions can have implications for the computation of convective phenomena. In general,
Galerkin �nite-element discretizations require additional stabilization operators in order to
compute convection-dominated problems. Recently, such stabilization operators have been re-
interpreted in a multiscale framework [14, 15]. We illustrate that the partition-of-unity method
can also be interpreted as a multiscale method, and that the choice of enrichment e�ects
the convective stabilization properties of the scheme. We illustrate this e�ect using results
obtained from a dispersion analysis for the linear convection case.

2. MODEL PROBLEM AND SPACE–TIME DISCRETIZATION

We consider the linear convection–di�usion equation in an open domain �= ]0; 1[, with ap-
propriate boundary and initial conditions

u; t + �u; x − �u;xx=0 in �

u(x; 0) = u0(x)

u(0; t) = g0(t)

u(1; t) = g1(t)

(1)

where �¿0 is the constant di�usion coe�cient and � the constant convection speed.
The basis of our formulation is the so-called time-discontinuous Galerkin method. The

Galerkin method, and the similarly the time-discontinuous Galerkin method lack stability in
the sense that spurious oscillations are produced in the presence of unresolved internal and
boundary layers. To improve upon this stability, while maintaining the order of accuracy, a
least-squares operator is typically added to the Galerkin formulation.
Consider a space–time domain, where the time interval ]0; T [ is subdivided into N intervals

In=]tn, tn+1[, n=0; 1; : : : ; N − 1. Then, for each time interval we de�ne a ‘space–time slab’
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Figure 1. Example of a two-dimensional space–time slab Qn with quadrilateral space–time elements Qen .

Qn=� × In and its boundary Pn=� × In, where � represents the boundary of the spatial
domain �, see Figure 1. Finally, the slabs are decomposed into space–time elements Qen ,
e=1; 2; : : : ; (nel)n.
Given a trial solution space V and a weighting space W the �nite-element variational

statement for (1) becomes: Within each Qn, n=0; 1; : : : ; N − 1, �nd u∈V such that ∀w∈W∫
Qn
(−w; tu− �w;xu+ �w;xu; x) dQ +

∫
�
(w(t−n+1)u(t

−
n+1)− w(t+n )u(t−n )) d�

+
(nel)n∑
e=1

∫
Qn
L(w)�L(u) dQ +

∫
Pn
(w(�u− �u; x)nx) dP=0 (2)

The �rst two and last integrals constitute the time-discontinuous Galerkin method. The time-
boundary integral resulting from applying the divergence theorem in space–time is added to
the jump term ∫

�
w(t+n )(u(t

+
n )− u(t−n )) d� (3)

to give the second integral in (2). This jump-term provides the mechanism for advancing the
solution from one slab to the next, by imposing a weakly enforced initial condition on the
space–time slabs.
The third integral is the least-squares operator [16], which is de�ned only in the element’s

interior, where L is the convection–di�usion di�erential operator de�ned by

L=
@
@t
+ �

@
@x

− � @
2

@x2
(4)

and � is a scalar parameter of dimension time de�ned according to [17] as

�=

((
2
�t

)2
+
(
2�
�x

)2
+ 9
(
4�
�x2

)2)−1=2
(5)

where �t is the time step and �x is the mesh width in the space-direction of the elements.
Note that the least-squares operator is not added for all computations.
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To evaluate the integrals standard Gaussian quadrature is used, where for each computation
a su�cient number of integration points is employed to ensure independence from quadrature
error.

3. THE PARTITION-OF-UNITY METHOD

In the partition-of-unity method (PUM) enrichment functions are incorporated into the standard
�nite-element approximation as follows:

uh(x; t)=
(nn)n∑
i=1
’i(x; t)

(
ai +

ne∑
j=1
�j(x; t)bij

)
(6)

Here, ’i(x; t) is the �nite-element shape function (constituting a partition of unity), ai is the
discrete value associated with node i, (nn)n is the total number of nodes of the nth slab, �j
contains ne enrichment functions and bij are the discrete values associated with node i.
The nodal values ai can be considered to be the standard �nite-element nodal degrees of

freedom, while the nodal values bij are additional degrees of freedom, one for each enrich-
ment function. An essential feature is the multiplication of the enrichment functions by the
nodal shape functions. This ensures the support of the enrichment and the shape function
to be identical, and makes it straightforward to implement in existing �nite-element codes.
Moreover, the enrichment is able to take on a local form by enriching only those nodes whose
support intersects regions of interest.
In general, the enrichment functions cannot be chosen arbitrarily. In order to form a basis

for the approximation space, the �nite-element shape functions and the enrichment functions
must be linearly independent. In this paper, we will only consider (bi)linear �nite-element
shape functions for ’i(x; t) as the basis of our formulation, and therefore, enrichment with
constant or linear functions, as well as pairs of functions of �j that are linearly dependent,
are excluded.

3.1. The partition-of-unity method as a multiscale method

The partition-of-unity method can be interpreted in the framework of the ‘variational multiscale
method’, as introduced by Hughes [15]. In the variational multiscale method, both the solution
and the weighting functions are decomposed a priori into so-called coarse and �ne-scale
components de�ned by

u= �u+ u′ (7)

w= �w + w′ (8)

where �u corresponds to the coarse-scale solution and u′ to the �ne-scale solution. Similarly,
�w and w′ correspond to the coarse-scale and �ne-scale weighting function, respectively. When
a mesh-based method is used, such as the �nite-element method, the coarse and �ne-scale
components of the solution can be regarded as the resolved �eld and the subgrid scales.
Substitution of these coarse and �ne-scale components into the problem’s variational statement
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and requiring the coarse and �ne-scale weighting functions to be linearly independent then
leads to a set of two variational equations, the so-called coarse and �ne-scale equations.
Considering the approximate solution of the partition-of-unity method, Equation (6), the

following observation can be made. Since we use (bi)linear �nite-element shape functions
only, approximation (6) can be decomposed into a (bi)linear component (ul) and an enriched
component (ue), given by

ul =
(nn)n∑
i=1
’iai (9)

ue =
(nn)n∑
i=1

ne∑
j=1
’i�jbij (10)

By choosing a Galerkin discretization for both the linear and enriched components of the
solution, an additional set of variational equations is obtained for the unknowns bij , similar
to the �ne-scale equation of the variational multiscale method. We can therefore interpret
the partition-of-unity method as a multiscale method, in which the resolved �eld corresponds
to the linear component of the solution and subgrid-scale phenomena can be modelled by
choosing an appropriate enrichment space.
As pointed out by Hughes [14], stabilization operators can also be interpreted as subgrid-

scale models. In particular stabilization models using ‘bubble-functions’ [18–20] or stabiliza-
tion methods of adjoint type can be derived by de�ning local Dirichlet problems [14] for the
�ne scales within an element, then substituting the �ne-scale solution back into the coarse-
scale equation. Although this approach cannot be followed for all enrichment functions, this
interpretation implies that the choice of enrichment, and therefore the related subgrid-scale
model, can a�ect the stabilization properties of the scheme. This is demonstrated in Section 5
for the partition-of-unity method by investigating the e�ect of a particular enrichment on the
dispersion properties of the scheme.

3.2. p-Adaptivity by polynomial enrichment

In principle, any function can be chosen as enrichment function, as long as the conditions
mentioned in Section 3 are satis�ed. By choosing polynomial enrichment functions, as shown
by Taylor et al. [11], the partition-of-unity method can be used as an alternative form of
p-adaptivity. In order to construct a quadratic approximation basis in space–time using three-
node triangular space–time elements with standard linear shape functions, the following en-
riched basis can be employed

�j= {(t − ti)2; (t − ti)(x − xi); (x − xi)2} (11)

where ti and xi are the co-ordinates of the nodes being enriched. Substituting this form into
(6), the total approximation on a triangular element can be written in matrix notation as

u(x; t)=
3∑
i=1
’i(x; t)


ai + [ (t − ti)2 (t − ti)(x − xi) (x − xi)2 ]



bi1

bi2

bi3




 (12)
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Note that this approximation consists of four degrees of freedom per node, one correspond-
ing to the standard �nite-element approximation, ai, and three enriched degrees of freedom
corresponding to the enrichment functions, bi1, bi2 and bi3. The key di�erence with standard
high-order methods is that the extra degrees of freedom are now located at existing nodes
rather than along the edges or within the element. It should be noticed here that this enriched
basis can be readily extended to multiple space-dimensions by including similar terms for the
other spatial directions, for example

�j= {(t − ti)2; (t − ti)(x − xi); (x − xi)2; (t − ti)(y − yi); (x − xi)(y − yi); (y − yi)2} (13)

is the equivalent of enriched basis (11), but now for two space-dimensions. However, in this
paper we do not consider more than one spatial dimension.
In order to have a full quadratic (third-order accurate) representation of the solution on the

complete domain including the boundaries, the boundary conditions must also be speci�ed
with third-order accuracy. Note that the values of the enrichment functions are zero at the
nodes, see (11). Therefore the value of ai at a Dirichlet-boundary must be equal to the exact
solution at the node location. The values of bi2 and bi3 do not contribute to the representation
at the boundary, and are therefore to be determined as part of the solution. The value of
bi1, however, must be speci�ed as a time-varying boundary condition. This can be done by
solving the following variational statement:∫

Pn
w(u− g) dP=

∫
Pn
(wl + we)(ul + ue − g) dP=0 (14)

along the P-boundaries for every space–time slab, where g represents the boundary condition
along these boundaries, and for this case only �1(t) is taken into account for the enriched part.
Eliminating the known values for the linear part of (14), which are the values of g in the
boundary nodes, results in two equations for the unknowns, bi1, at the two time levels of the
slab (see Figure 1). These values are then used as Dirichlet conditions for the discrete system.

4. RESULTS

In this section, we discuss the results obtained from the partition-of-unity method incorporating
di�erent enrichment functions. First we consider the linear di�usion equation and investigate
the approximation error and e�ciency of the method. Subsequently, we study the e�ects of
the chosen enrichments on the solution of the linear convection equation.

4.1. The linear di�usion equation

We consider Stokes second problem, describing the shear �ow above an in�nite oscillating
plate. This problem is described by the linear di�usion equation, which is obtained from (1)
by setting � to zero, and the following boundary conditions:

u; t − �u;xx=0 for 0¡x¡∞
u(0; t) = U0 cos(!t)

u(∞; t) = 0
(15)
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where U0 is the amplitude and ! is the frequency of the oscillating plate. The analytic solution
of this problem is known and given by

u(x; t)=U0e−�x cos(!t − �x) (16)

or, equivalently

u(x; t)=U0e−�x(cos(�x) cos(!t)) +U0e−�x(sin(�x) sin(!t)) (17)

where the constant �=
√
!=2�. In order to solve this problem numerically on 06x61, the

boundary condition at in�nity is replaced by one at x=1 using the analytic value

u(1; t)=U0e−� cos(!t − �) (18)

In the following, U0 and ! are set to unity and �=5:0 for all computations.

4.1.1. Enrichment based on the analytic solution. For problems more general than those con-
sidered here, the analytical solution is usually not available. It is therefore useful to consider
the performance of the partition-of-unity method incorporating enrichment functions which
only partially represent the behaviour of the analytic solution. Inspecting the analytic solution
of the linear di�usion equation (17), we choose the following enrichment function:

�(x)= e−(x−xi)k� − 1 (19)

where xi is the node which is being enriched, k is some arbitrary constant and the ‘−1’ is
added so that the solution at the nodes is equal to ai, see (6). Notice that this enrichment
function only includes the exponential spatial variation of the analytic solution, not the com-
plete analytic spatial variation, which would also necessitate the use of the time-varying sine
terms. Moreover, notice that only for k=1:0 the exact exponential spatial variation of the
analytic solution is obtained.
In Figure 2 the enriched solution for k=1:0 at time t=2� is compared to the non-enriched

solution, both obtained without incorporating the least-squares operator. For simplicity all the
nodes in the computational domain have been enriched. The results were computed using
quadrilateral elements with mesh spacing �x=0:25 and �t=�=10. The enriched approxima-
tion is in excellent agreement with the exact solution using only four elements per space–time
slab. Notice that in the element’s interior the enriched solution also closely follows the exact
solution, in contrast to the standard piecewise-linear approximation.

4.1.2. Polynomial enrichment. Figure 3 shows the results for the di�usion problem using
polynomial enrichment. The results were computed are shown for t=2� using triangular
elements with �x=0:25 and �t=�=10. It is seen that the polynomial-enriched solution is
in better agreement with the analytic solution than the linear �nite-element solution. At this
level of discretization, however, it is not as accurate as the exponential-enriched solution. The
relative accuracy of the exponential and polynomial enrichments is considered in more detail
in the next section.
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Figure 2. Exact, linear �nite-element and exponential-enriched solution (with k =1:0) of the linear
di�usion equation at t=2� and �=5:0 using four quadrilateral elements (�x=0:25 and �t=�=10).
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Figure 3. Exact, linear �nite-element and polynomial-enriched solution of the linear di�usion equation
at t=2� and �=5:0 using four triangular elements (�x=0:25 and �t=�=10).

4.1.3. Approximation error and e�ciency. In order to compare the solution convergence
behaviour, we consider the discrete L2-norm of the error, computed according to

‖u− uh‖L2 =
(
1
n
∑
i

∑
j
(u(xi; tj)− uh(xi; tj))2

)−1=2
(20)

The results obtained for the di�usion equation by re�ning the mesh simultaneously in space
and time are shown in Figure 4. It is seen from the slopes of the curves that the partition-
of-unity method with exponential enrichment (19) has a slightly higher convergence rate
than the linear �nite-element method, which is of second order. As expected, the partition-
of-unity method with polynomial enrichment (11) shows third-order convergence behaviour.
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Figure 4. Convergence rates for the linear �nite-element method and the partition-of-unity method
with exponential and polynomial enrichment.
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Figure 5. E�ciency of the partition-of-unity method using exponential and polynomial enrichment
compared to the standard �nite-element method.

Furthermore, it can be seen from Figure 4 that the partition-of-unity method with exponential
enrichment is clearly the most accurate for coarse meshes. For �ner meshes, there will be
a cross-over point for which the polynomial-enriched approximation becomes more accurate
because of its higher convergence rate.
The partition-of-unity method requires additional degrees of freedom compared to the stan-

dard �nite-element method, depending on the number enrichment functions and the number of
enriched nodes. It is therefore interesting to compare the e�ciency of the methods by consi-
dering the error obtained for a given number of degrees of freedom (Figure 5). For the range
of degrees of freedom investigated, the partition-of-unity method with exponential enrich-
ment turns out to be the most e�cient. Again, because of its higher convergence rate, there
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Figure 6. Accuracy of the partition-of-unity method with exponential
enrichment for varying values of k.

will be a cross-over point after which the polynomial enriched approximation becomes more
e�cient. Note that in order to carry out the numerical integration to obtain the coe�cients of
sti�ness matrix of the problem, more integration points are needed for the partition-of-unity
method compared to the standard �nite-element method. However, the corresponding increase
in runtime is considerably less than the increase in runtime associated with solving a larger
system.
It should be reiterated that the exponential enrichment considered in Figure 5 only partly

represents the spatial variation of the analytic solution. The results in Figure 5 therefore
con�rm the bene�ts of introducing approximate solutions into the �nite-element approximation
space. The robustness of this technique can be demonstrated by considering values of k in
(19) which deviate from unity. Figure 6 shows the accuracy obtained for k=0:6, 1.0 and
k=1:4. It can be seen that the e�ciency of the partition-of-unity method is retained for
this wall-bounded �ow even when a quite rough approximation of the analytic solution is
employed.

4.2. The linear convection equation

As pointed out in Section 3.1, the choice of enrichment can be anticipated to a�ect the
convective stabilization properties of the partition-of-unity method. We therefore investigate
the e�ects of the enrichments discussed in the previous sections on the solution of the linear
convection equation, obtained from (1) by setting � to zero, with an initial Gaussian wave
and periodic boundary conditions, i.e.

u; t + �u; x=0 for 0¡x¡1

u(x; 0) = e−800(x−0:25)
2

u(0; t) = u(1; t)
(21)
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Figure 7. Convection of a Gaussian wave computed with the �nite-element method,
Galerkin=least-squares and the partition-of-unity method with exponential enrichment

(k =1:0) using quadrilateral elements and Courant number C=0:5.

where the initial condition is set to zero if u(x; 0)¡10−10. The analytic solution of the linear
convection equation is then a simple translation of the initial wave, which, due to the periodic
boundary condition, will re-enter the domain on the left as it exits on the right.
First, we consider the enrichment function based on the analytic solution of the linear

di�usion equation, i.e. the exponential enrichment function (19). Since we are dealing with
pure convection, there is no analytic constant for the exponent, so we assume

�(x)= ekc(x−xi) − 1 (22)

where kc is now an arbitrary constant.
In Figure 7 the piecewise-linear solutions with and without the least-squares operator are

compared with the exponential-enriched solution for k=1:0, using quadrilateral elements and
a Courant number C= ��x=�t=0:5. As discussed in Section 2, severe oscillatory behaviour
is observed for the standard linear solution without least-squares operator. Including the least-
squares operator eliminates the majority of the oscillations, but also leads to excessive decay
of the initial wave. The exponential-enriched solution does remarkably well, showing no
oscillations and a quite good representation of the peak, in contrast to the other two solutions.
Next, we consider the e�ect of the polynomial enrichment as presented in Section 3.2 on

the linear convection problem. In Figure 8 the linear solutions with and without the least-
squares operator are compared with the polynomial-enriched solution for C=0:5, but now
for triangular elements. The linear solution without least-squares operator is again oscilla-
tory, although less than observed for quadrilateral elements. This is due to the fact that
for the chosen orientation of the triangles the characteristics of the wave propagation are
almost aligned with the element boundaries. As a consequence, the exact solution can be cap-
tured well using a standard space–time �nite-element approximation [21]. The least-squares
solution is not oscillatory, however excessive damping of the initial peak is again observed.
The polynomial-enriched solution is also slightly oscillatory, comparable to the standard �nite-
element solution.
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Figure 8. Convection of a Gaussian wave computed with the �nite-element method,
Galerkin=least-squares and the partition-of-unity method with polynomial enrichment using

triangular elements and Courant number C=0:5.

5. DISPERSION ANALYSIS

In this section we consider results from a dispersion analysis of the partition-of-unity method
incorporating the enrichment functions discussed in the previous section for the linear convec-
tion equation. As discussed in Reference [21] ampli�cation factors can be derived by assuming
a solution of the form ea(n�t)ei� and solving for �=ea(n�t). Here �=	�x is the spatial wave
number which takes on M discrete values, where M is the number of elements which span
the periodic domain. The amplitude and phase of a given discrete wave number can then be
expressed relative to their exact counterparts as

relative amplitude = |�m| (23)

relative phase = − tan−1
(
Im(�m)
Re(�m)

)
(C�)−1 (24)

where C is the Courant number. The errors in amplitude and phase are thus given by the
deviation from unity.
Figure 9 shows the computed relative phase and amplitude for the partition-of-unity method

incorporating the exponential enrichment (22) with kc = 1:0 and the Galerkin=least-squares
method using quadrilateral elements. It is seen that for C=0:5 the partition-of-unity method
has very low phase and amplitude error, explaining the favourable result observed in Figure 7.
In terms of the variational multiscale framework, one could thus say that for lower Courant
numbers, the enrichment acts as a near-optimal subgrid-scale model. The Galerkin=least-
squares solution exhibits considerably larger amplitude errors at this Courant number, since
this method is speci�cally designed to damp high frequencies in order to prevent their
high phase errors from polluting the solution. For larger Courant numbers, the phase and
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Figure 9. Relative amplitude and phase for the partition-of-unity method using exponential enrichment
(with k =1:0) and the Galerkin=least-squares method.

amplitude errors of the exponential-enriched solution increase, the latter providing convective
stabilization by damping the inaccurate high-frequency modes.
In Figure 10 the relative amplitude and phase of the partition-of-unity method using polyno-

mial enrichment are shown and compared to those obtained from the exponential enrichment
and the Galerkin=least-squares method for a Courant number of 1.5. It is seen that the relative
amplitude for the polynomial enrichment is superior to that of the exponential enrichment at
this Courant number, however, large phase errors are observed for the high frequency modes.
These are observed as oscillatory behaviour in the computed solution of Figure 5.

6. CONCLUSIONS

We have investigated the performance of the partition-of-unity method for convection–di�usion
problems. First, we considered the linear di�usion problem, or Stokes’ second problem, using
exponential enrichment based on an approximation of the time-independent component of the
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Figure 10. Relative amplitude and phase for the partition-of-unity method using polynomial and
exponential enrichment (with k =1:0) and the Galerkin=least-squares method for C=1:5.

analytic solution. It was shown that this approach leads to an increase in accuracy for a given
number of degrees of freedom, when compared with the standard �nite-element method. This
increased e�ciency is retained even when rough approximations are used. We also considered
the use of polynomial enrichment in the partition-of-unity method. It was shown that higher-
order accuracy can be obtained using this approach, although its e�ciency is generally lower
than that of the exponential enrichment for the problems considered here.
We have investigated the implications of the choice of enrichment on the computation of

convection phenomena. As the enriched basis can be interpreted as a �ne-scale model of a
multiscale approach, it can be anticipated that its chosen form can in�uence the stabilization
properties of the method. It was shown that for low Courant numbers, the method using
exponential enrichment has very low phase and amplitude errors and thus acts as a near
optimal subgrid-scale model. The polynomial enrichment has low phase errors but large phase
errors for the high-frequency modes. Its stability is less optimal than that of the exponential-
enriched scheme.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:199–213



PARTITION-OF-UNITY METHOD FOR CONVECTION–DIFFUSION PROBLEMS 213

REFERENCES

1. Strouboulis T, Babu	ska I, Copps K. The design and analysis of the Generalized Finite Element Method.
Computer Methods in Applied Mechanics and Engineering 2000; 181:43–69.

2. Babu	ska I, Melenk J. The Partition-of-unity Method. International Journal for Numerical Methods in
Engineering 1997; 40:727–758.

3. Melenk J, Babu	ska I. The partition-of-unity �nite element method: Basic Theory and applications. Computer
Methods in Applied Mechanics and Engineering 1996; 139:289–314.

4. Strouboulis T, Copps K, Babu	ska I. The generalized �nite element method: an example of its implementation
and illustration of its performance. International Journal for Numerical Methods in Engineering 2000; 47:
1401–1417.

5. Daux C, Mo
es N, Dolbow J, Sukumar N, Belytschko T. Arbitrary branched and intersecting cracks with
the extended �nite element method. International Journal for Numerical Methods in Engineering 2000; 48:
1741–1760.

6. Dolbow J, Mo
es N, Belytschko T. An extended �nite element method for modeling crack growth with frictional
contact. Computer Methods in Applied Mechanics and Engineering 2001; 190:6825–6846.

7. Mo
es N, Belytschko T. Extended �nite element method for cohesive crack growth. Engineering Fracture
Mechanics 2002; 69:813–833.

8. Mo
es N, Dolbow J, Belytschko T. A �nite element method for crack growth without remeshing. International
Journal for Numerical Methods in Engineering 1999; 46:131–150.

9. Sukumar N, Mo
es N, Moran B, Belytschko T. Extended �nite element method for three-dimensional crack
modelling. International Journal for Numerical Methods in Engineering 2000; 48:1549–1570.

10. Laghrouche O, Bettess P, Astley RJ. Modelling of short wave di�raction problems using approximating systems
of plane waves. International Journal for Numerical Methods in Engineering 2002; 54:1501–1533.
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